Numerical analysis of the Factorization Method for Electrical Impedance Tomography in inhomogeneous medium

نویسندگان

  • Houssem Haddar
  • Giovanni Migliorati
چکیده

The retrieval of information on the coefficient in Electrical Impedance Tomography is a severely ill-posed problem, and often leads to inaccurate solutions. It is well-known that numerical methods provide only low-resolution reconstructions. The aim of this work is to analyze the Factorization Method in the case of inhomogeneous background. We propose a numerical scheme to solve the dipole-like Neumann boundary-value problem, when the background coefficient is inhomogeneous. Several numerical tests show that the method is able to detect the presence and location of the inclusions, in many cases where the diffusion coefficient depends nonlinearly on the spatial coordinates. In addition, we test the numerical scheme after adding artificial noise. Key-words: Inverse Problems, Factorization Method, Electrical Impedance Tomography * INRIA Saclay Île de France and École Polytechnique (CMAP) „ Dipartimento di Matematica “Francesco Brioschi”, Politecnico di Milano and École Polytechnique (CMAP) ha l-0 06 41 26 0, v er si on 2 24 J ul 2 01 3 Rapport de Recherche Inria Résumé : Nous nous intéressons dans ce travail à l’application de la méthode de Factorization à l’imagerie par impédance électrique dans des milieux hétérogènes. Nous proposons un schéma numérique qui se base sur une évaluation précise de la fonction de Green du milieu. Plusieurs tests numériques sont effectués demontrant de bonnes performances de la méthode, très comparables au cas de milieux homogènes. Mots-clés : Problèmes inverses, la méthode de factorisation, tomographie d’impédance électrique ha l-0 06 41 26 0, v er si on 2 24 J ul 2 01 3 Numerical analysis of the Factorization Method for EIT in inhomogeneous medium 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

متن کامل

Numerical analysis of the Factorization Method for EIT with piece-wise constant uncertain background

We extend the Factorization Method for Electrical Impedance Tomography to the case of background featuring uncertainty. We first describe the algorithm for known but inhomogeneous backgrounds and indicate expected accuracy from the inversion method through some numerical tests. Then we develop three methodologies to apply the Factorization Method to the more difficult case of piece-wise constan...

متن کامل

The Factorization Method for Electrical Impedance Tomography Data from a New Planar Device

We present numerical results for two reconstruction methods for a new planar electrical impedance tomography device. This prototype allows noninvasive medical imaging techniques if only one side of a patient is accessible for electric measurements. The two reconstruction methods have different properties: one is a linearization-type method that allows quantitative reconstructions; the other one...

متن کامل

Detecting Inclusions in Electrical Impedance Tomography Without Reference Measurements

We develop a new variant of the factorization method that can be used to detect inclusions in electrical impedance tomography from either absolute current-to-voltage measurements at a single, nonzero frequency or from frequency-difference measurements. This eliminates the need for numerically simulated reference measurements at an inclusion-free body and thus greatly improves the method’s robus...

متن کامل

Localized Potentials in Electrical Impedance Tomography

In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L∞ + -conductivities in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011